Differential GC content between exons and introns establishes distinct strategies of splice-site recognition.

نویسندگان

  • Maayan Amit
  • Maya Donyo
  • Dror Hollander
  • Amir Goren
  • Eddo Kim
  • Sahar Gelfman
  • Galit Lev-Maor
  • David Burstein
  • Schraga Schwartz
  • Benny Postolsky
  • Tal Pupko
  • Gil Ast
چکیده

During evolution segments of homeothermic genomes underwent a GC content increase. Our analyses reveal that two exon-intron architectures have evolved from an ancestral state of low GC content exons flanked by short introns with a lower GC content. One group underwent a GC content elevation that abolished the differential exon-intron GC content, with introns remaining short. The other group retained the overall low GC content as well as the differential exon-intron GC content, and is associated with longer introns. We show that differential exon-intron GC content regulates exon inclusion level in this group, in which disease-associated mutations often lead to exon skipping. This group's exons also display higher nucleosome occupancy compared to flanking introns and exons of the other group, thus "marking" them for spliceosomal recognition. Collectively, our results reveal that differential exon-intron GC content is a previously unidentified determinant of exon selection and argue that the two GC content architectures reflect the two mechanisms by which splicing signals are recognized: exon definition and intron definition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure.

DNA methylation is known to regulate transcription and was recently found to be involved in exon recognition via cotranscriptional splicing. We recently observed that exon-intron architectures can be grouped into two classes: one with higher GC content in exons compared to the flanking introns, and the other with similar GC content in exons and introns. The first group has higher nucleosome occ...

متن کامل

GC content provides new insights into exon recognition

Studies throughout the years revealed several characteristics that differentiate alternative exons from constitutive ones. However, some of those characteristics, such as splice signals and other regulatory sequences, are inherently sequence-based. Herein we show that these characteristics are heavily biased by GC content, and may not actually differ between alternative and constitutive exons. ...

متن کامل

SF3B1 association with chromatin determines splicing outcomes.

Much remains unknown concerning the mechanism by which the splicing machinery pinpoints short exons within intronic sequences and how splicing factors are directed to their pre-mRNA targets. One probable explanation lies in differences in chromatin organization between exons and introns. Proteomic, co-immunoprecipitation, and sedimentation analyses described here indicate that SF3B1, an essenti...

متن کامل

Efficient internal exon recognition depends on near equal contributions from the 3′ and 5′ splice sites

Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. In vertebrates, most splice sites are initially recognized by the spliceosome across the exon, because most exons are small and surrounded by large introns. This gene architecture predicts that efficient exon recognition depends largely on the strength of the flanking 3' and 5' splice si...

متن کامل

The architecture of pre-mRNAs affects mechanisms of splice-site pairing.

The exon/intron architecture of genes determines whether components of the spliceosome recognize splice sites across the intron or across the exon. Using in vitro splicing assays, we demonstrate that splice-site recognition across introns ceases when intron size is between 200 and 250 nucleotides. Beyond this threshold, splice sites are recognized across the exon. Splice-site recognition across...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell reports

دوره 1 5  شماره 

صفحات  -

تاریخ انتشار 2012